BAB II

TINJAUAN PUSTAKA

2.1 Perancangan

Perancangan sebagai proses yang menggabungkan kreativitas dan ketertiban, di mana ide-ide segar disusun dalam kerangka formalitas yang terstruktur. Ia menekankan bahwa perancangan harus melibatkan pemikiran kreatif dan sistematis untuk menciptakan solusi yang memenuhi kebutuhan dan tujuan tertentu (Sardi, 2024).

2.1.1 Sistem Pakar

Sistem pakar adalah perangkat lunak yang digunakan untuk memecahkan masalah yang biasanya diselesaikan oleh seorang pakar. Program ini memberikan solusi atau bantuan pengambilan keputusan mengenai permasalahan tertentu, mirip dengan saran seorang pakar (Ahmad Saleh Bancin, 2024).

2.1.2 Mitsubishi Canter

Mitsubishi Canter merupakan truk niaga ringan yang dirancang dengan fokus pada efisiensi bahan bakar dan daya angkut optimal. Dengan mesin diesel berteknologi Common Rail dan fitur keselamatan modern, Canter menjadi solusi ideal bagi pengusaha yang membutuhkan kendaraan komersial yang handal dan ekonomis (Dr. Budi Santoso, 2025).

2.1.3 Meetode Forward Chaining

Forward chaining adalah metode inferensi dalam sistem pakar yang bekerja secara data-driven, yaitu memulai dari fakta atau data awal, kemudian menerapkan

aturan-aturan yang tersedia untuk mencapai kesimpulan secara berurutan hingga tujuan tercapai (Dr. Aulia Ramadhan, 2025).

2.1.4 Web

Website adalah sebuah halaman atau kumpulan halaman web yang saling berhubungan dan dapat diakses dari seluruh dunia, selama terhubung jaringan internet. Setiap situs web memiliki alamat unik yang biasa disebut dengan URL (Uniform Resource Locator). Website bisa berisi berbagai jenis informasi, seperti teks, gambar, video, maupun audio. Selain itu, website juga dapat berisi fitur interaktif seperti form kontak, komentar, atau chatting (Khamdani et al., 2021).

2.1.5 Php

PHP (*Hypertext Preprocessor*) adalah bahasa scripting server-side yang bersifat *open-source* dan dapat digunakan untuk membangun aplikasi web skala kecil hingga besar. PHP memiliki kemampuan pemrograman berorientasi objek dan berfungsi untuk menangani logika bisnis web, interaksi dengan pengguna, dan manipulasi data (David Sklar & Adam Trachtenberg, 2024)

2.1.6 Basis Data

Menurut (Irwan Effendi, 2023), basis data merupakan informasi yang disimpan di dalam komputer secara teratur sehingga dapat dilihat menggunakan suatu program komputer untuk mendapatkan informasi dari basis data tersebut.

2.1.7 *MySQL*

Menurut (Rinaldi Munir, 2024), *MySQL* adalah salah satu sistem manajemen basis data relasional (RDBMS) open source yang paling populer dan digunakan dalam berbagai aplikasi, terutama aplikasi berbasis web. *MySQL* mendukung *SQL* sebagai bahasa standar untuk manipulasi data.

2.1.8 Aliran Sistem Informasi

Menurut Dwi Hartanto (2025), Aliran sistem informasi merupakan representasi visual dari pergerakan data dan informasi dalam suatu sistem, yang mencakup arus dokumen, formulir, dan komunikasi antar komponen sistem, baik manual maupun digital. Aliran ini digunakan untuk mengidentifikasi keterlambatan, duplikasi, dan potensi kesalahan dalam proses sistem.

Tabel 2.1 Simbol – simbol pada Aliran Sistem Informasi

Simbol	Nama	Keterangan
	Simbol proses komputerisasi	Menggambarkan proses yang dilakukan secara komputerisasi
	Simbol dokumen	Menggambarkan dokumen masukan dan keluaran system
	Simbol proses manual	Menggambarkan proses manual
A	Simbol proses pengarsipan	Menggambarkan <i>file</i> yang diarsipkan menurut alphabet

С	Simbol pengarsipan	Menggambarkan <i>file</i> yang diarsipkan menurut kronologi
$\uparrow \downarrow \xrightarrow{\longleftarrow}$	Simbol garis alir	Menggambarkan aliran proses dan dokumen
	Penghubung	Digunakan untuk menghubungkan sambungan aliran.
	Basis Data	Untuk media penyimpanan secara terkomputerisasi.

2.1.9 Unified Modelling Language (UML)

UML atau *Unified Modeling Language* merupakan salah satu standar bahasa yang umumnya digunakan dalam industri untuk mendefinisikan persyaratan, melakukan analisis & desain, serta menggambarkan arsitektur dalam pengembangan perangkat lunak berorientasi objek. Kemunculan UML dipicu oleh kebutuhan akan pemodelan visual guna menspesifikasikan, menggambarkan, membangun, dan mendokumentasikan sistem perangkat lunak (Fitria et al., 2021).

2.1.10 Use Case Diagram

Use case diagram merupakan salah satu jenis pemodelan dalam Unified Modeling Language (UML) yang digunakan untuk menggambarkan perilaku (behavior) dari suatu sistem informasi yang akan dibangun. Diagram ini sangat penting dalam tahap analisis dan perancangan sistem karena mampu menyajikan

gambaran menyeluruh mengenai fungsi-fungsi utama dari sistem dan aktor-aktor yang berinteraksi dengan sistem tersebut. Menurut Parina et al. (2022), use case diagram digunakan untuk mengidentifikasi fungsi-fungsi apa saja yang tersedia dalam sistem informasi, serta mengetahui siapa saja yang memiliki hak atau peran untuk menjalankan fungsi-fungsi tersebut. Dengan demikian, use case diagram dapat membantu tim pengembang dalam memahami kebutuhan sistem dari sudut pandang pengguna (user-oriented), bukan dari sudut pandang teknis. Setiap aktor dalam use case diagram merepresentasikan entitas luar yang berinteraksi dengan sistem, baik itu pengguna langsung seperti admin atau user, maupun sistem eksternal lainnya. Sedangkan use case menunjukkan layanan, proses, atau fungsionalitas tertentu yang disediakan oleh sistem untuk aktor. Hubungan antara aktor dan use case dapat berupa asosiasi langsung, atau hubungan dengan sifat include dan extend, tergantung pada bagaimana skenario proses berjalan., seperti yang terlihat pada Tabel 2.2 dibawah ini.

Tabel 2.2 Simbol-simbol Use Case

Simbol	Deskripsi
Aktor / actor	Pengguna sistem atau yang berinteraksi
2	langsung dengan sistem.
Use Case	Lingkaran elips dengan nama use case
	nya
Use case	tertulis ditengah lingkaran
Assocation	Garis yang berfungsi menghubungkan
	actor dengan use case.
Relasi	Sebagai penghubung antara actor
→	usecase, use case, use case-usecase dll.
Include relationship	Memungkinkan suatu use case untuk
< <iinclude>> O→</iinclude>	menggunakan fungsionalitas yang
	disediakan oleh <i>usecase</i> yang lainnya.
Extend Relationship	Memungkinkan usecase memiliki
< <extend>></extend>	kemungkinan untuk memperluas
○	Fungsionalitas yang disediakan oleh
	usecase yang lainnya.

Sumber: (Simatupang & Sianturi, 2021)

2.1.11 Class Diagram

Menurut (Pitrawati & Sanjaya, 2021) *Class Diagram* menggambarkan struktur sistem dari segi pendefinisian kelas-kelas yang akan dibuat untuk

membangun sistem. Kelas memiliki apa yang disebut atribut dan metode atau operasi. Berikut adalah simbol-simbol yang ada pada diagram Kelas.

Tabel 2.3 Simbol Class Diagram

	Simbol		Deskripsi
Kelas	Nama_kelas +atribut +operasi()		Kelas pada struktur sistem
Antar m	nuka / interface		Sama dengan konsep <i>interface</i> dalam pemrograman berorientasi objek
Asosiasi / association			Relasi antar kelas dengan makna umum, asosiasi biasanya juga disertai dengan <i>multiplicity</i>
Asosiasi berarah / direct association		tion	Relasi antar kelas dengan makna kelas yang satu digunakan oleh kelas yang lain, asosiasi biasanya juga disertai dengan <i>multiplicity</i>
Generalisasi			Relasi antar kelas dengan makna generalisasi-spesialisasi (umum khusus)
	Simbol		Deskripsi

Kebergantungan / dependency	Relasi antar kelas dengan makna
	kebergantungan antar kelas
Agregasi /aggregation	Relasi antar kelas dengan makna
──	semua bagian (whole-part)

Sumber: (Pitrawati & Sanjaya, 2021)

2.1.12 Sequence Diagram

Diagram sequence "menggambarkan kelakuan objek pada use case dengan mendeskripsikan waktu hidup objek dan massage yang dikirimkan dan diterima antar objek. Oleh karena itu untuk menggambar diagram sekuen maka harus diketahui objek-objek yang terlibat dalam sebuah use case beserta metode-metode yang dimiliki kelas yang diinstansiasi menjadi objek itu". Membuat diagram sekuen juga dibutuhkan untuk melihat skenario yang ada pada use case (Simatupang & Sianturi, 2022). Berikut adalah simbol-simbol yang ada pada diagram sequence.

Tabel 2.4 Simbol Sequence Diagram

Simbol	Deskripsi

Entity Class	Bagian dari sistem yang berisi kumpulan kelas
	berupa entitas-entitas yang membentuk gambaran
	awal sistem dan menjadi landasan untuk menyusun
	basis
	data.
Boundary Class	Berisikan sekumpulan kelas yang menjadi antarmuka
	antara satu atau lebih aktor dengan sistem, seperti
	tampilan form entry dan form cetak.
Simbol	Deskripsi
Control Class	Objek yang berisi logika aplikasi yang tidak
	memiliki tanggungjawab kepada entitas, contohnya
	adalah kalkulasi dan aturan bisnis yang melibatkan
	berbagai objek.
Message	Simbol mengirim pesan antar kelas.
_1: Message0()	
Recursive	Menggambarkan pengiriman pesan yang dikirim
	untuk dirinya sendiri.
Activation	Mewakili sebuah eksekusi operasi dari objek
П	panjang kotak ini berbanding lurus dengan durasi
Ļ	aktivasi sebuah operasi.

Lifeline	Garis titik-titik yang terhubung dengan objek
 	sepanjang linelife terdapat activation.

Sumber: (Simatupang & Sianturi, 2022)

2.1.13 Collaboration Diagram

Menurut Anggraini (2020), *Collaboration Diagram* adalah menggambarkan objek seperti sequence diagram, tetapi lebih menekankan peran masing-masing pada objek dan bukan pada waktu penyampaian. *Collaboration diagram* menggambarkan interaksi antar objek/bagian dalam bentuk urutan pengiriman pesan. Diagram komunikasi merepresentasikan informasi yang diperoleh dari Diagram Kelas, *Diagram Sequen*, dan *Diagram Use Case* untuk mendeskripsikan gabungan antara struktur statis dan tingkah laku dinamis dari suatu sistem (Putra,

2018). Berikut adalah simbol-simbol yang ada pada collaboration diagram.

Tabel 2.5 Simbol-simbol Collaboration Diagram

Simbol	Deskripsi
Aktor / actor	Actor merupakan pengguna yang
<u>Q</u>	melakukan interaksi denagn system.
Object Instance	Obyek yang dibuat, melakukan
	tindakan, dan dimusnahkan selama
	lifeline.

Interaksi Link	Merupakan indikasi bahwa obyek
	kejadian dan berkolaborasi aktor dan
	pertukaran pesan.
Sinkronis Pesan	Seketika sebuah komunitas antara
———	objek-objek yang menyampaikan
	informasi, dengan harapan bahwa
	tindakan akan dimulai sebagai hasil.

Sumber: (Woro Isti Rahayu, 2020)

2.1.14 Statechart Diagram

Statechart Diagram menggambarkan transisi dan prubahan keadaan suatu objek pada sistem sebagai akibat dari stimuli yang diterima. Pada umumnya Statechart Diagram menggambarkan class tertentu. Dalam UML, State digambarkan berbentuk segi empat dengan sudut membulat dan memiliki namasesuai kondisi saat itu. Transisi antar state umumnya memiliki kondisi guard yang merupakan syarat terjadinya transisi yang bersangkutan, dituliskan dalam kurung siku (Wahyudi, 2020). State chart diagram atau dalam bahasa Indonesia disebut diagram mesin status digunakan untuk menggambarkan perubahan status atau transisi status dari sebuah mesin atau sistem. Perubahan tersebut digambarkan dalam suatu graf berarah. State chat diagram cocok digunakan untuk menggambarkan alur interaksi pengguna dengan sistem (Putra, 2023). Simbolsimbol yang terdapat pada Statechart Diagram ditunjukkan pada tabel dibawah ini.

Tabel 2.6 Simbol-simbol Statechart Diagram

Simbol	Deskripsi
State	Nilai atribut dan nilai link pada suatu waktu
	tertentu, yang dimiliki oleh suatu objek.
Initial Pseudo State	Bagaimana objek dibentuk atau diawali
Final State	Bagaimana objek dibentuk dan dihancurkan
Transition	Sebuah kejadian yang memicu sebuah state
>	objek dengan cara memperbaharui satu atau
	lebih nilai atributnya
Association	Apa yang menghubungkan antara objek satu
	dengan objek lainnya.
Node	Elemen fisik yang eksis saat aplikasi
	dijalankan dan mencerminkan suatu sumber
	daya komputasi.

Sumber: (Destriana, 2021)

2.1.15 Activity Diagram

Diagram aktivitas atau *activity diagram* menggambarkan workflow (aliran kerja) atau aktivitas dari sebuah sistem atau proses bisnis atau menu yang ada pada perangkat lunak". Yang perlu diperhatikan disini adalah bahwa diagram aktivitas menggambarkan aktivitas sistem bukan apa yang dilakukan aktor (Suharni et al., 2023). Simbol-simbol yang terdapat pada *Activity Diagram* ditunjukkan pada tabel dibawah ini.

Tabel 2.7 Simbol-simbol Activity Diagram

Simbol	Deskripsi
Initial State	Diletakkan pada pojok kiri atas dan merupakan
	titik awal aktivitas.
Final State	Akhir aktivitas.
Activity	Menggambarkan suatu proses atau kegiatan
	bisnis.
Fork atau percabangan	Digunakan untuk menunjukkan kegiatan yang
	dilakuakn secara paralel untuk menggabungkan dua kegiatan paralel menjadi satu.

Join atau gabungan		Join atau rake, digunakan untuk menunjukan	
		adanya dekomposisi.	
Simbol		Deskripsi	
Decision Points		Menggambarkan pilihan untuk pengambilan keputusan, bernilai <i>true</i> atau <i>false</i> .	
Swimlane		Pembagian <i>activity diagram</i> untuk menunjukan siapa melakukan apa.	

Sumber: (Suharni et al., 2023).

2.1.16 Deployment Diagram

Deployment diagram adalah diagram yang merepresentasikan model fisik dari hardware serta integrase dan distribusi software pada arsitektur hardware tersebut(Hamas & Imaduddin, 2023). Deployment Diagram digunakan untuk menggambarkan detail bagaimana komponen disusun di infrastruktur sistem (Hendini, 2016).

Tabel 2.8 Simbol Deployment Diagram

Simbol	Deskripsi

Package	Package merupakan sebuah bungkusan dari	
Package	satu atau lebih <i>node</i>	
Node	Biasanya mengacu pada perangkat keras	
	(hardware), perangkat lunak (software) yang	
nama_node	tidak dibuat sendiri, jika didalam <i>node</i>	
	disertakan komponen untuk mengkonsistenkan	
	rancangan maka komponen yang	
	diikutsertakan harus sesuai dengan komponen	
	yang telah didefinisikan sebelumnya pada	
	diagram komponen	
Kebergantungan/dependency	Kebergantungan antara node, arah panah	
	mengarah pada <i>node</i> yang dipakai	
Link	Relasi antar node	

Sumber: (Adelia Prameswari, 2024)

2.2 Penelitian Terdahulu

Tabel 2.9 Tabel Penelitian Terdahulu

No	Nama Jurnal	Nama Issn	Isi Jurnal
		NO Issn	
		Tahun Terbit	
1.	Perancangan Sistem Pakar Diagnosa Penyakit Tanaman Cabai Berbasis Web Menggunakan Metode Forward	Nama ISSN: Rina Oktaviani ISSN: 2722- 0194 Tahun Terbit: 2024	Penelitian ini merancang sistem pakar berbasis web untuk mendiagnosis penyakit tanaman cabai. Metode forward chaining digunakan dalam penelusuran fakta ke kesimpulan, dengan struktur ifthen rule. Pengujian sistem menunjukkan akurasi mencapai
	Chaining		92% dalam diagnosis penyakit daun keriting, layu fusarium, dan antraknosa.
2.	Implementasi Forward Chaining dalam Sistem Pakar Penentuan Jenis Kulit Wajah Berbasis Web	ISSN: 2302- 8043	Sistem pakar ini dikembangkan untuk memberikan konsultasi jenis kulit wajah. Metode forward chaining bekerja dengan menelusuri fakta-fakta seperti kondisi kulit, sensitivitas, dan tingkat minyak untuk menentukan jenis kulit. Aplikasi web dibangun menggunakan PHP dan MySQL.
3.	Sistem Pakar Berbasis Web	Nama ISSN: Nur Hidayah	Aplikasi web dirancang untuk membantu orang tua memilih nutrisi

	untuk	ISSN: 2615-	berdasarkan gejala kekurangan gizi
	Rekomendasi	6925	anak. Sistem pakar menerapkan
	Nutrisi Anak	Tahun Terbit:	metode forward chaining untuk
	Menggunakan	2024	menghasilkan rekomendasi yang
	Forward		akurat, dengan 40 aturan dan 10
	Chaining		kriteria gejala.
4.	Rancang	Nama ISSN:	Dengan pendekatan forward
	Bangun Sistem	M. Faizal	chaining, sistem ini mampu
	Pakar Deteksi	ISSN: 2354-	mendeteksi kemungkinan pasien
	Dini Covid-19	6164	terinfeksi COVID-19 berdasarkan
	Menggunakan	Tahun Terbit:	gejala ringan hingga berat. Sistem
	Forward	2023	berbasis web ini diuji coba pada 50
	Chaining dan		pasien dengan tingkat keakuratan
	PHP Web		sebesar 88%.
5.	Sistem Pakar	Name ICCN	Cistom mandatalisi Ivamatansan
3.		Nama ISSN:	Sistem mendeteksi kematangan
	Berbasis Web	Dedi	buah durian berdasarkan warna,
	untuk Menentukan	Gunawan	aroma, dan suara ketukan. Proses inferensi dilakukan secara forward
		ISSN: 2580-	
	Tingkat	3252	chaining dan sistem menampilkan
	Kematangan Buah Durian		hasil dalam antarmuka web responsif.
	dengan Forward	Tahun Terbit:	responsit.
	Chaining	2023	
	Chaming		
6.	Sistem Pakar	Nama ISSN:	Aplikasi ini dirancang untuk petani
	Diagnosa	Lina Marlina	ikan dalam mendiagnosis penyakit
	Penyakit Ikan	ISSN: 2716-	pada ikan nila. Metode forward
	Nila Berbasis	1310	chaining digunakan untuk

	Web	Tahun Terbit:	menelusuri gejala ke diagnosis
	Menggunakan	2024	akhir. Sistem dikembangkan
	Metode Forward		menggunakan framework Laravel
	Chaining		dan Bootstrap.
7.	Penerapan	Nama ISSN:	Sistem ini memberi rekomendasi
	Metode Forward	Siti Rahmah	hukum berdasarkan fakta yang
	Chaining dalam	ISSN: 2685-	diberikan pengguna. Dengan 100
	Sistem Pakar	7326	aturan hukum sederhana dan 25
	Berbasis Web	Tahun Terbit:	fakta dasar, sistem menyimpulkan
	untuk Konsultasi	2023	hasil dengan forward chaining
	Hukum		berbasis aturan yang dinamis.
	Sederhana		
0	W 1 D 1	M IGGM	0:4 : 1: 1 1 1 1
8.	Web-Based	Nama ISSN:	Sistem ini digunakan oleh konselor
	Expert System		sekolah untuk mendeteksi potensi
	untuk Deteksi	ISSN: 2598-	gangguan psikologis siswa
	Dini Gangguan	8894	berdasarkan input gejala perilaku.
	Psikologis Siswa	Tahun Terbit:	Forward chaining digunakan untuk
	Menggunakan	2024	menelusuri alur diagnosa dengan
	Forward		hasil berupa tingkat gangguan
	Chaining		ringan hingga berat.
9.	Forward	Nama ISSN:	Sistem ini membantu teknisi dalam
	Chaining	Iqbal	mengidentifikasi kerusakan jaringan
	Berbasis Web	Ramadhan	seperti DNS error, koneksi lambat,
	dalam Sistem	ISSN: 2477-	dan router conflict. Dengan metode
	Pakar	4967	forward chaining, sistem menelusuri
	Identifikasi	Tahun Terbit:	penyebab berdasarkan gejala awal
	Masalah	2024	
	1414541411	404 4	
			antarmuka web.

	Jaringan		
	Komputer		
10.	Sistem Pakar	Nama Issn:	Sistem pakar berbasis forward
	Penentuan	Yuli Astuti	chaining ini menyesuaikan gaya
	Metode	ISSN: 2601-	belajar siswa (visual, auditori,
	Pembelajaran	2311	kinestetik) dengan metode
	Efektif untuk	Tahun Terbit:	pembelajaran. Hasil rekomendasi
	Siswa SMA	2023	tampil otomatis di web dan dapat
	Berbasis Web		digunakan guru dalam pengambilan
	dengan Forward		keputusan pendidikan.
	Chaining		